On properties of maximal 1-planar graphs

نویسندگان

  • Dávid Hudák
  • Tomás Madaras
  • Yusuke Suzuki
چکیده

A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Maximal 1-Planarity of Graphs with a Rotation System in Linear Time - (Extended Abstract)

A 1-planar graph is a graph that can be embedded in the plane with at most one crossing per edge. A 1-planar graph on n vertices can have at most 4n− 8 edges. It is known that testing 1-planarity of a graph is NP-complete. A 1-planar embedding of a graph G is maximal, if no edge can be added without violating the 1-planarity of G. In this paper, we study combinatorial properties of maximal 1-pl...

متن کامل

On topological aspects of orientations

1. Introduction Constrained orientations, that is orientations such that all the vertices have a prescribed indegree, relates to one another many combinatorial and topological properties such as arboricity, connectivity and planarity. These orientations are the basic tool to solve planar augmentation problems 2]. We are concerned with two classes of planar graphs: maximal planar graphs (i.e. po...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

An update on non-Hamiltonian 54-tough maximal planar graphs

Studying the shortness of longest cycles in maximal planar graphs, we improve the upper bound on the shortness exponent of the class of 54 -tough maximal planar graphs presented by Harant and Owens [Discrete Math. 147 (1995), 301–305]. In addition, we present two generalizations of a similar result of Tkáč who considered 1-tough maximal planar graphs [Discrete Math. 154 (1996), 321–328]; we rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2012